In [1]:
import pandas as pd
import numpy as np
In [5]:
integrin=pd.read_excel("gtex_integrin_7_organs.xlsx")
In [6]:
integrin
Out[6]:
Unnamed: 0 | primary_site | ITGA10 | ITGAD | ITGAM | ITGA3 | ITGBL1 | ITGAE | ITGA2 | ITGB3 | ... | ITGA6 | ITGA2B | ITGB1 | ITGAL | ITGA9 | ITGB5 | ITGA8 | ITGA4 | ITGA1 | ITGA11 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | GTEX-13QIC-0011-R1a-SM-5O9CJ | Brain | 0.5763 | -6.5064 | 2.2573 | 0.7832 | 1.0363 | 4.6035 | 2.5731 | -2.8262 | ... | 2.8562 | 1.3846 | 5.8430 | 1.1316 | -0.7108 | 3.5387 | -0.0725 | -0.4521 | 0.2029 | -2.8262 |
1 | GTEX-1399S-1726-SM-5L3DI | Lung | 4.9137 | -3.6259 | 4.7307 | 7.1584 | 1.7702 | 4.9556 | 1.9149 | 2.6067 | ... | 4.2412 | 4.1211 | 7.7256 | 4.4900 | 2.9281 | 6.1483 | 5.1867 | 2.6185 | 4.7856 | -0.0277 |
2 | GTEX-PWCY-1326-SM-48TCU | Ovary | 2.3953 | -5.0116 | 1.4547 | 4.2593 | -0.7346 | 4.4149 | 0.2642 | 1.5216 | ... | 3.6816 | 1.5465 | 7.2964 | -0.9406 | 2.7742 | 5.0414 | 2.0325 | 0.7579 | 2.2573 | 1.2516 |
3 | GTEX-QXCU-0626-SM-2TC69 | Lung | 4.0541 | -2.3147 | 4.5053 | 7.5651 | 4.1788 | 4.1772 | 5.3695 | 1.8444 | ... | 4.9631 | 1.9149 | 7.9947 | 3.3911 | 2.8462 | 6.7683 | 4.1636 | 2.7951 | 5.3284 | 1.2147 |
4 | GTEX-ZA64-1526-SM-5CVMD | Breast | 2.0569 | -2.4659 | 3.3993 | 3.1311 | 3.0074 | 4.4977 | -1.7809 | 2.7139 | ... | 4.7340 | 0.6332 | 7.3496 | -0.9406 | 2.5338 | 6.5696 | 1.7229 | -0.6416 | 3.1195 | 1.1050 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
1982 | GTEX-QMRM-0826-SM-3NB33 | Lung | 5.3067 | -3.8160 | 4.9065 | 7.5810 | 5.8714 | 4.7345 | 2.6185 | 3.1095 | ... | 5.6080 | 3.7324 | 8.2849 | 4.6201 | 3.6440 | 6.7052 | 5.1094 | 3.3364 | 5.8153 | 1.6604 |
1983 | GTEX-YFCO-1626-SM-4W1Z3 | Prostate | 2.9581 | -4.6082 | 1.1641 | 4.6938 | 1.5902 | 5.8625 | -0.5125 | 1.7617 | ... | 3.8798 | -1.4699 | 7.5163 | -0.3752 | 2.9562 | 5.3035 | 4.4304 | -0.9406 | 3.6136 | 0.4233 |
1984 | GTEX-1117F-2826-SM-5GZXL | Breast | 4.3184 | -6.5064 | 1.0433 | 4.8440 | 3.5498 | 4.6809 | 1.0293 | 3.3478 | ... | 5.3256 | -0.0725 | 7.7516 | 1.1382 | 2.1411 | 7.1132 | 0.3796 | 0.0854 | 3.8650 | 1.0151 |
1985 | GTEX-Q2AG-2826-SM-2HMJQ | Brain | 3.4622 | -5.5735 | 1.5013 | 5.4835 | 1.7702 | 4.7517 | 0.6790 | -3.1714 | ... | 1.1960 | 4.1740 | 4.3002 | 0.5470 | -0.9971 | 3.7982 | -0.2498 | 1.4808 | -0.5125 | -0.5125 |
1986 | GTEX-XV7Q-0426-SM-4BRVN | Lung | 2.5585 | -1.7809 | 6.7916 | 6.5865 | 2.7051 | 4.9519 | 4.3618 | 3.1892 | ... | 3.5779 | 2.8974 | 7.7685 | 4.8294 | 1.9149 | 5.9989 | 2.4117 | 2.4198 | 4.2080 | 1.0007 |
1987 rows × 29 columns
In [9]:
brain_Lung_data = integrin[integrin['primary_site'].isin(['Brain', 'Lung'])] #filter data by organ, display both brain and liver data
#rearrange data
brain_Lung_vertical = brain_Lung_expression_only.melt(id_vars = 'primary_site', var_name = 'integrin_gene', value_name = 'expression_levels')
In [8]:
brain_Lung_expression_only=brain_Lung_data.iloc[:,1:]
In [11]:
brain_Lung_vertical
Out[11]:
primary_site | integrin_gene | expression_levels | |
---|---|---|---|
0 | Brain | ITGA10 | 0.5763 |
1 | Lung | ITGA10 | 4.9137 |
2 | Lung | ITGA10 | 4.0541 |
3 | Lung | ITGA10 | 6.0732 |
4 | Lung | ITGA10 | 4.2510 |
... | ... | ... | ... |
38875 | Brain | ITGA11 | -2.2447 |
38876 | Brain | ITGA11 | -2.5479 |
38877 | Lung | ITGA11 | 1.6604 |
38878 | Brain | ITGA11 | -0.5125 |
38879 | Lung | ITGA11 | 1.0007 |
38880 rows × 3 columns
In [15]:
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
#define wwhat is X and what is Y in your model
X=brain_Lung_expression_only[['ITGA10']]
y=brain_Lung_expression_only['primary_site']
#define split between train and test
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
#define the model you want to use : logistic regression
model = LogisticRegression()
model.fit(X_train, y_train)
# predict and evaluate
y_pred = model.predict(X_test)
accuracy=accuracy_score(y_test,y_pred)
print(f"Accuracy using ITGA10: {accuracy:.2f}")
Accuracy using ITGA10: 0.94
In [17]:
#Switch ITGA10 to ITGAb4 to see how it impacts the accuracy
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
#define wwhat is X and what is Y in your model
X=brain_Lung_expression_only[['ITGB4']]
y=brain_Lung_expression_only['primary_site']
#define split between train and test
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
#define the model you want to use : logistic regression
model = LogisticRegression()
model.fit(X_train, y_train)
# predict and evaluate
y_pred = model.predict(X_test)
accuracy=accuracy_score(y_test,y_pred)
print(f"Accuracy using ITGA10: {accuracy:.2f}")
Accuracy using ITGA10: 0.81
In [21]:
#AUROC curve
from sklearn.metrics import roc_curve, roc_auc_score
import matplotlib.pyplot as plt
#Step 1: Prepare data
X = brain_Lung_expression_only[['ITGA10']] # 👈 Use your chosen integrin
y = brain_Lung_expression_only['primary_site'].map({'Brain': 0, 'Lung': 1}) # Binary encoding
# Step 2: Train/test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
# Step 3: Train model
model = LogisticRegression()
model.fit(X_train, y_train)
# Step 4: Predict probabilities
y_proba = model.predict_proba(X_test)[:, 1] # Probabilities for class "Lung"
# Step 5: Compute ROC curve and AUC
fpr, tpr, thresholds = roc_curve(y_test, y_proba)
auc = roc_auc_score(y_test, y_proba)
# Step 6: Plot
plt.figure(figsize=(6, 6))
plt.plot(fpr, tpr, label=f'AUC = {auc:.2f}')
plt.plot([0, 1], [0, 1], linestyle='--', color='gray') # random guess line
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC Curve (Brain vs Lung)')
plt.legend()
plt.grid(True)
plt.show()
In [23]:
#AUROC curve
from sklearn.metrics import roc_curve, roc_auc_score
import matplotlib.pyplot as plt
#Step 1: Prepare data
X = brain_Lung_expression_only[['ITGB4']] # 👈 Use your chosen integrin
y = brain_Lung_expression_only['primary_site'].map({'Brain': 0, 'Lung': 1}) # Binary encoding
# Step 2: Train/test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
# Step 3: Train model
model = LogisticRegression()
model.fit(X_train, y_train)
# Step 4: Predict probabilities
y_proba = model.predict_proba(X_test)[:, 1] # Probabilities for class "Lung"
# Step 5: Compute ROC curve and AUC
fpr, tpr, thresholds = roc_curve(y_test, y_proba)
auc = roc_auc_score(y_test, y_proba)
# Step 6: Plot
plt.figure(figsize=(6, 6))
plt.plot(fpr, tpr, label=f'AUC = {auc:.2f}')
plt.plot([0, 1], [0, 1], linestyle='--', color='gray') # random guess line
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC Curve (Brain vs Lung) using ITGB4 expression')
plt.legend()
plt.grid(True)
plt.show()
In [27]:
#AUROC curve
from sklearn.metrics import roc_curve, roc_auc_score
import matplotlib.pyplot as plt
#Step 1: Prepare data
X = brain_Lung_expression_only[['ITGB4', 'ITGA3']] # 👈 Use your chosen integrin
y = brain_Lung_expression_only['primary_site'].map({'Brain': 0, 'Lung': 1}) # Binary encoding
# Step 2: Train/test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
# Step 3: Train model
model = LogisticRegression()
model.fit(X_train, y_train)
# Step 4: Predict probabilities
y_proba = model.predict_proba(X_test)[:, 1] # Probabilities for class "Lung"
# Step 5: Compute ROC curve and AUC
fpr, tpr, thresholds = roc_curve(y_test, y_proba)
auc = roc_auc_score(y_test, y_proba)
# Step 6: Plot
plt.figure(figsize=(6, 6))
plt.plot(fpr, tpr, label=f'AUC = {auc:.2f}')
plt.plot([0, 1], [0, 1], linestyle='--', color='gray') # random guess line
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC Curve (Brain vs Lung) using ITGB4 nad ITGA10 expression')
plt.legend()
plt.grid(True)
plt.show()
In [28]:
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import LabelEncoder
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score
# Step 1: Prepare features and target
selected_genes = ['ITGA10', 'ITGB4']
#X = integrins.iloc[:, -27:] # Assuming the last 27 columns are integrins
X = integrin[selected_genes] # Assuming the last 27 columns are integrins
y = integrin['primary_site']
# Step 2: Encode organ labels as numbers
le = LabelEncoder()
y_encoded = le.fit_transform(y)
# Step 3: Train/test split
X_train, X_test, y_train, y_test = train_test_split(X, y_encoded, test_size=0.2, random_state=42)
# Step 4: Train multinomial logistic regression
model = LogisticRegression(multi_class='multinomial', solver='lbfgs', max_iter=1000)
model.fit(X_train, y_train)
# Step 5: Predict and evaluate
y_pred = model.predict(X_test)
print("Accuracy:", accuracy_score(y_test, y_pred))
print("\nClassification Report:")
print(classification_report(y_test, y_pred, target_names=le.classes_))
print("\nConfusion Matrix:")
print(confusion_matrix(y_test, y_pred))
Accuracy: 0.7939698492462312 Classification Report: precision recall f1-score support Bone Marrow 0.77 1.00 0.87 10 Brain 0.81 0.94 0.87 247 Breast 0.64 0.41 0.50 44 Liver 1.00 0.65 0.79 23 Lung 0.76 0.88 0.82 43 Ovary 0.50 0.10 0.17 10 Prostate 0.75 0.14 0.24 21 accuracy 0.79 398 macro avg 0.75 0.59 0.61 398 weighted avg 0.78 0.79 0.77 398 Confusion Matrix: [[ 10 0 0 0 0 0 0] [ 3 231 3 0 8 1 1] [ 0 25 18 0 1 0 0] [ 0 8 0 15 0 0 0] [ 0 4 1 0 38 0 0] [ 0 6 0 0 3 1 0] [ 0 12 6 0 0 0 3]]
/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages/sklearn/linear_model/_logistic.py:1247: FutureWarning: 'multi_class' was deprecated in version 1.5 and will be removed in 1.7. From then on, it will always use 'multinomial'. Leave it to its default value to avoid this warning. warnings.warn(
In [ ]: